A Posteriori Error and Optimal Reduced Basis for Stochastic Processes Defined by a Finite Set of Realizations
نویسندگان
چکیده
The use of reduced basis has spread to many scientific fields for the last fifty years to condense the statistical properties of stochastic processes. Among these basis, the classical Karhunen-Loève basis corresponds to the Hilbertian basis that is constructed as the eigenfunctions of the covariance operator of the stochastic process of interest. The importance of this basis stems from its optimality in the sense that it minimizes the total mean square error. When the available information about this stochastic process is characterized by a limited set of independent realizations, the covariance operator is not perfectly known. In this case, there is no reason for the Karhunen-Loève basis associated with any estimator of the covariance that are not converged to be still optimal. This paper presents therefore an adaptation of the Karhunen-Loève expansion in order to characterize optimal basis for projection of stochastic processes that are only characterized by a relatively small set of independent realizations.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملMultilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations
In this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. Existence and uniqueness of the stochastic optimal solution is proved by establishing the equivalence between the constrained optimization problem and a stochastic saddle point problem. Analytic regularity of the optimal solution in the...
متن کاملStatistical inverse problems for non-gaussian non-stationary stochastic processes defined by a set of realizations
This paper presents a method to analyze the transitory response of complex and nonlinear systems, which are excited by non-Gaussian and non-stationary random fields, by solving of a statistical inverse problem with experimental measurements. Based on a double expansion, it is particularly adapted to the modeling of stochastic processes that are only characterized by a relatively small set of in...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کامل